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Abstract. Entity Linking (EL) is the task of identifying concepts men-
tioned in a text and linking them to a given knowledge base. It includes
two subtasks: Entity Recognition (ER) and Entity Disambiguation (ED).
While entity linking in English long text has been well studied in previ-
ous works, Chinese short text entity linking remains a big challenge due
to the lack of explicit word delimiters and rich context. In this paper, we
propose an enhanced character embedding based neural approach, which
explicitly encodes mention dictionary and mention position information
into ER model and ED model respectively, to solve the CCKS2019 Task
2. Extensive experiments show that our proposed models significantly
improve the performance of Chinese short text entity linking. Through
two model ensemble strategies, our solution achieves a F1 score of 0.79266
on the final test data of CCKS2019 Task 2.

Keywords: Entity linking · Entity recognition · Entity disambiguation
· Character embedding.

1 Introduction

Entity linking aims to recognize potentially ambiguous mentions of entities in a
text and link them to a target knowledge base (KB). It is an essential step for
many NLP tasks, such as knowledge fusion, KB construction and KB-based QA.
An EL system typically consists of two subtasks: i) Entity Recognition - extracts
all possible entity references (i.e. mentions) from a text fragments and ii) Entity
Disambiguation - maps these ambiguous mentions to the correct entities in KB.

Entity linking has been studied for many years and has achieved great ad-
vancement with neural networks [6, 10, 13]. While most of the works are designed
for English corpus, especially for long texts, the CCKS2019 Task 2 focuses on
Chinese short texts instead. Compared with entity linking of English long texts,
Chinses short text entity linking is a more challenging task. First, Chinese texts
lack explicit delimiters such as whitespace to separate words, making it difficult
to recognize mention boundaries. Previous studies for Chinese ER can be mainly
divided into two categories: word-based and character-based method. Character-
based method has been shown empirically superior to word-based method as it
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doesn’t suffer from word segmentation errors [8, 11]. However it can’t fully lever-
age latent word sequence information, which is potentially useful. To this end,
external information is needed to improve its performance. Second, many recent
ED models take advantage of global context to capture the coherence among
the entities for a set of related mentions in a document [1, 7]. However short
texts are often nosiy and less coherent, lacking rich contextual information for
global method. Third, mentions’ positions should be taken into consideration
when they are presented with neural models, otherwise all mentions in the same
text are viewed as identical. Previous works [13, 16] usually consider mention’s
position by splitting local context into two part: the left and right side of the
mention and using a duo of neural networks to process each side. However, it is
not suitable for short texts because both sides of context will be shorter than the
original text, making it more difficult to extract useful semantic information.

To address the above challenges, we propose an ehanced character embedding
based neural approach to incorporate additional information into EL system. 1)
For entity recognition, we regard it as a sequence labeling problem and use a
character based BiLSTM-CNN-CRF model to solve it. Based on the observation
that all extracted mentions must exist in the mention dictionary provided by the
knowledge base, we explore several ways to construct feature embeddings for each
character to integrate dictionary information into ER model and help identify
mention boudaries. Besides, we design some other embeddings that contain rich
contextual information. All these embeddings will be combined with the vanilla
character embedding to compose enhanced character embedding to improve the
performance of ER model. 2) For entity disambiguation, we model it as a
semantic matching problem between mention’s context and candidate entity’s
description text. We use a BiLSTM-CNN model to generate representations for
mention and candidate entity, which are further used to model semantic similar-
ity between them with cosine measure. As for mention representation, in order
to incorporate position information, we first calculate each character’s relative
distance from the mention and convert it to a continous position embedding,
which represents its relevance to the mention. The position embedding will be
combined with vanilla character embedding to compose enhanced character em-
bedding. Besides, we generate representation using hidden states from BiLSTM-
CNN only of the mention part, instead of the overall sequence. Experiments show
that our enhanced character embedding based method outperforms traditional
methods. 3) For ensemble, we exploit two strategies: model weights ensemble
and outputs ensemble, to improve the final performance. Our solution achieves
a F1 score of 0.79266 on the final test data of CCKS2019 Task 2.

2 Model Description

2.1 Data

The CCKS2019 Task 2 has provided 90K labeled sentences for training, 10K
unlabeled for preliminary testing and 30K unlabeled for final testing. Most of
them are short texts with an average length of 22. The knowledge base is also
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provided, which includes nearly 0.4M entity information. We extract “alias” and
“subject” field of each entity information to construct a mention dictionary.
We also build a map from mention to entities to generate candidate entities.
Furthermore, we concatenate all the tuples of (predict, object) from “data” field
into one sentence to represent entity description. Most of the description texts
are considerably long, with an average length of 196.

2.2 Entity Recognition Model

Fig. 1. The overall framework of entity recognition model.

Our proposed ER model is shown in Figure 1. Same as the widely used Chi-
nese ER neural model, we use character-based BiLSTM-CNN-CRF as the main
network structure. Formally, we denote a Chinese sentence as: s = {c1, c2, · · · , cn},
where ci denotes the i-th character. The ER model aims to label each charac-
ter ci with BIOES tagging scheme. The differences between our model and a
standard character-based model are mainly on the embedding layer. First, same
as standard character-based model do, we convert each character ci to a dense
vector, which we call “vanilla character embedding”, using pre-trained embed-
ding method. Here we use word2vec [12] to train on the training data and entity
description texts to obtain them. Apart from that, we also design 7 extra feature
embeddings that capture mention dictionary and rich contextual information to
enhance vanilla character embedding for handling rare and unseen cases and
identifying mention boundaries efficiently. We use sentence“比特币吸粉无数”
(“比特币” as the ground truth), as an example to introduce these embeddings.

Word Embedding Mention boundaries usually coincide with some word bound-
aries, which suggests that words in character sequence can provide rich boundary
information for character-based model. To this end, we first use jieba3 to load

3 https://github.com/fxsjy/jieba
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the mention dictionary as its default dictionary and then segment the sentences
into word sequences. This procedure can ensure a great possibility that each
potential mention can be segmented as a single word. For instance, the sample
sentence will be cut by jieba into a sequence: [“比特币”, “吸粉”, “无数”]. We
then use word2vec to train on these word sequences to obtain word embeddings.
Finally we add the same word embedding to each character in the word.

Charater Position Feature After obtaining segmentation results with jieba,
we can also provide boundary information with character position features in
the word. We use BMES tagging scheme to represent character position in the
word. Therefore, the example setence will be tagged as [“B”, “M”, “E”, “B”,
“E”, “B”, “E”]. We initialize a dense vector for each position label using uni-
form distribution and then optimize it during the model training phase. Each
character will be assigned with a corresponding position feature vector.

Position-aware Character Embedding We also try to combine character
sequences with the character position label sequences descrided above. For the
example, we can get a sequence: [“比B”, “特M”, “币E”, “吸B”, “粉E”, “无B”,
“数E”]. We then again use word2vec to train on these sequences to obtain
position-aware character embeddings, yielding multiple embeddings per char-
acter. Learning separate embeddings for each positionally tagged character can
help distinguish between uses of the same character in different contexts.

Max Match Feature Apart from jieba, we use BiDirectional Maximum Match-
ing algorithm [5] (BDMM) with mention dictionary to segment sentences as well.
With BDMM, we can get potential mentions in a coarse granularity. Different
from jieba, all characters that mismatch the dictionary will remain as a single
token. So by applying BDMM to the example we can get a sequence: [“比特币”,
“吸”, “粉”, “无”, “数”]. Similar as character position feature, we use BMEO
tagging scheme to indicate whether the character is in a matched mention and
its position. We also initialize a dense vector for each label using uniform dis-
tribution and optimize it during the model training phase, which we call max
match feature.

N-gram Match Feature Inspired by the work on Chinese word segmenta-
tion [17], we generate n-gram match feature ti for each character ci to represent
whether a text segment that contain character ci and its surroundings is men-
tion or not. We first segment the context of character ci based on the pre-defined
n-gram feature templates, as listed in Table 1. We then use a binary value to
indicate whether the text segment is a matched mention or not. Here we use
ti,2(k−1)−1 and ti,2(k−1) to denote the value of the output corresponding to the
k-gram template for ci. Figure 2 shows an example of n-gram match feature
construction of character “币”. In this paper we actually consider 7-gram
template at most. So we finally generate a 14-dimensional multi-hot vector for
each character.
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Table 1. N-gram feature templates for the i-th character.

Type Template

bigram ci−1ci, cici+1

trigram ci−2ci−1ci, cici+1ci+2

4-gram ci−3ci−2ci−1ci, cici+1ci+2ci+3

5-gram ci−4ci−3ci−2ci−1ci, cici+1ci+2ci+3ci+4

Fig. 2. Example of n-gram match feature embedding construction. The character un-
derline in red is the character ci. The text segment with red rectangle is the matched
mention.

Bigram Embedding Character bigrams have been shown useful for represent-
ing characters in word segmention [2, 15]. We again use word2vec to train on
bigram sequences of the training data, such as [“比特”, “特币”, “币吸”, “吸粉”,
“粉无”, “无数”], to obtain bigram embeddings.

BERT Embedding BERT [4] has become enormously popular in recent NLP
studies, which utilizes large-scale unlabeled training data and generates enriched
contextual representation. Ever since the release of BERT, there have been sev-
eral studies foucing on enhanced pretrained language model for Chinese, such
as ERNIE [14] and BERT wwm [3]. Both of them have achieved great improve-
ment on various Chinese NLP tasks. In this paper, we try these 3 bert models
to enhance character embedding. We present their contributions in next section.

We concatenate the above embeddings with vanilla character embedding to
compose our proposed enhance character embedding, which will be passed to
BiLSTM-CNN to obtain hidden state sequence: H = {h1, h2, . . . , hn}. BiLSTM-
CNN is able to fully capture both local and long-distance contexts for ER. A
CRF layer is then used on top of the hidden state sequence in order to consider
the dependencies between successive labels. The probability of a label sequence
y = {y1, y2, . . . , yn} is calculated as follow:

p(y|s) =
exp

(∑
i

(
Oi,yi + Tyi−1,yi

))∑
ỹ exp

(∑
i

(
Oi,ỹi + Tỹi−1,ỹi

)) (1)
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where ỹ denotes an arbitrarily label sequence, O is a state score matrix calculated
based on the label itself and T is a transition score matrix calculated based on
the adjacent labels.

Given the labeled training data {(sj ,yj)}j∈1,T , we minimize the sentence-
level negative log-likelihood loss to train our ER model:

L = −
∑
j

log (p (yj |sj)) (2)

Viterbi algorithm is used to find the highest scored label sequence after training.

2.3 Entity Disambiguation Model

Fig. 3. The overall framework of entity disambiguation model.

With ER model, we recognize a list of mentions in a text. For each mention,
we retrieve candidate entities using the map from mention to entities that we
previously construct. The task of ED is to find the most matching entity from
the candidates. Formally, given the mentions {mi}i∈1,T extracted from sentence
s = {c1, c2, . . . , cn}, where each mention is a subsequence of s: m = {cq, . . . , cr},
the output of EL model is a list of mention-entity pairs: {(mi, ei)}i∈1,T .

In this paper, we investigate entity disambiguation using only local informa-
tion provided with mention context and entity description. The architecture of
our proposed ER model is shown in Figure 3. We again use BiLSTM-CNN as
the main network structure to generate fixed-sized representations for mention
and candidate entity. After that, we utilize cosine function to calculate semantic
similarity score for each pair of mention and candidate entity. The candidate
entity with the highest score is chosen as the matching one. Note that we do not
use siamese structure due to the significant length difference between mention
context and entity description.
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Mention Representation We propose two ways to take mentions’ positions
into consideration when representing them. First, at the embedding layer, we
concatenate vailla character embedding with position embedding for each char-
acter. The position of a context character is defined as its relative distance from
the mention in the sentence and the position of a mention character is regared
as 0. Each positional value is initialized with a dense vector (i.e. position embed-
ding) using uniform distribution and optimized during the model training phase.
Second, suppose the hidden state sequence output from the left BiLSTM-CNN
in Figure 3 is Hm = {hm1 , hm2 , . . . , hmn }, we produce representation only using the
hidden states of mention subsequence instead of the overall sequence, because
the former is more informative. To be specific, given a mention m = {cq, . . . , cr},
we concatenate the first and the last hidden state as well as the results of max-
pooling and self-attention over the hidden states of mention subsequence:

gm =
[
hmq ;hmr ;hmmaxpool;h

m
self−attend

]
(3)

The self-attend embedding hmself−attend is calculated as follow:

αmi = wTαh
m
i

αmi =
exp (αmi )∑r
k=q α

m
k

hmself−attend =

r∑
k=q

αmk h
m
k

(4)

We then project gm to final mention representation rm with the same size as
entity representation (see below) using a simple dense layer:

rm = Dense (gm) (5)

Entity Representation Suppose the hidden state sequence output from the
right BiLSTM-CNN in Figure 3 is He = {he1, he2, . . . , hen}. Apart from using max-
pooling over the hidden states He, we also try to utilize attention mechanism to
generate entity representation. Different from the self-attention used above, here
we use mention representation rm to attend to the hidden states, aiming to find
out the most relevant characters in entity description. Entity representation re

based on attention mechanism is calculated as follow:

αei = score (rm, hei )

αei =
exp (αei )∑n
t=1 α

e
t

re =

n∑
t=1

αeth
e
t

(6)

where αei is the attentive score for rm and i-th hidden state hei . We explore 3
ways to calculate αei : i) additive attention: αei = vTα tanh (Wa [rm;hei ]); ii) mul-
tiplicative attention: αei = rmWah

e
i ; iii) scaled-dot attention: αei = rmThei/

√
d.

The performances of these 4 encoding strategies are shown in next section.
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For training ED model, we first obtain negative samples from the candidate
list excluding ground truth entity, and then minimize the margin-based loss:

L
(
rm, re+, r

e
−
)

=
∑
j

n∑
i=0

max
(
m+ cosine

(
rmj , r

ej,i
−
)
− cosine

(
rmj , r

ej
+

)
, 0
)
(7)

where n is the number of negative samples and m denotes margin. The idea
behind is to encourge the cosine similarity score of positive sample to be at least
m higher than those of negative samples.

2.4 Model Ensemble

We exploit 2 ensemble strategies to further improve the performance of our
proposed approach.

Weights Averaging Inspired by [9], during a single training process, we main-
tain a copy of model’s weights wa in memory, which is used to keep track of
the averaged weights. After each epoch of training, we update the weights of the
copy:

wa =
wa · nmodels + w

nmodels + 1
(8)

where nmodels is the number of models already included in the average and w
represents the weights of the model being trained. This amounts to storing the
running average of the models seen at the end of each epoch of training. Experi-
ments show that this “smooth” version of model almost always outperforms the
best single model obtained during a single training.

Outputs Averaging Another simple yet effective strategy to improve perfor-
mance of neural models is to train multiple models instead of a single model
and combine the predictions from these models. In this paper, we design various
ER and ED models with different model configurations and then simply average
their outputs to obtain final predictions. We show the details in next section.

3 Experiments

3.1 Experimental Setup

Our proposed approach is implemented by Keras4 with Tensorflow backend. We
use Adam as the optimizer and set the initial learning rate to be 0.001. The batch
size is 32. All hidden states of BiLSTMs, feature maps of CNNs and the pre-
trained embeddings based on word2vec have 300 dimensions, while the randomly-
initialized embeddings have 50 dimensions. During training, all the pre-trained

4 https://keras.io/
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embeddings and BERT model are untrainable, while the randomly-initialized
embeddings are fine-tuned. As for ED model training, we get 5 negative samples
for each mention-entity pair and set margin m = 4 . As for weights ensemble,
we start model weights averaging after 3 and 5 epochs of training ER and ED
model respectively.

We randomly split the labeled data into training set and dev set with a 9:1
ratio. Earlystopping is applied to avoid overfitting: training will stop when we
observe no performance improvement on dev set after 3 epochs, then we store
the model with best performance on dev set. Next we show performances of our
proposed models on dev set, preliminary and fianl test set using F1-score metric.

3.2 Results of ER models on dev set

Table 2. F1 scores of ER models on dev set.

Model
Dev F1

Weights ensemble

vanilla character 0.77316 0.77524

enhanced character (BERT) 0.83145 0.83323

enhanced character (ERNIE) 0.83175 0.83355

enhanced character (BERT-wwm) 0.83019 0.83126

ER model ensemble - 0.83836

Table 3. Ablation study of enhanced character embeddings of ER model on dev set.

Model
Dev F1

Weights ensemble

enhanced character (ERNIE) 0.83175 0.83355

- word embedding 0.82878 0.83042

- character position feature 0.83080 0.83173

- position-aware character embedding 0.83159 0.83303

- n-gram match feature 0.83067 0.83185

- max match feature 0.83009 0.83116

- bigram embedding 0.83148 0.83282

- bert embedding 0.82969 0.83034

The experimental results of ER models are presented in Table 2. We compare
our proposed enhanced character embedding based model with vanilla character
embedding based model. The differece between the 2nd to 4rd model is the bert
embedding they use. As indicated from the table, enhanced character embedding
does bring a significant performance gain, highlighting the utility of incorporat-
ing mention dictionary and rich contextual information for entity recognition.
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Among the enhanced models, the one using ERNIE as bert embedding stands
out from the others. We believe it is because ERNIE is trained on not only
Wikipedia data but also many web texts, which is useful for informal texts like
the dataset used in this task. Besides, by applying weights ensemble strategy,
we can always get another weights-averaged model for each single training. We
also list their performances in the table. We can find that the weights-averaged
model achieves substantial improvements over the original model, suggesting
that model weights averaging leads to better generalization.

To gain a better understanding of the impact of each enhanced embedding,
we perform an ablation study and present the results in Table 3. We observe
performance degradation when eliminating any embedding, showing that each
embedding contribues to the ER performance. Interestingly, the contributions
of bigram embedding and positon-aware character embedding is much less than
those of the others. As a result, we further train various models with and without
using bigram embedding and position-aware character embedding as input. We
then combine all these models using outputs ensemble strategy and observe
further performance boost. The result of ER model ensemble is shown in the
last row of Table 2.

3.3 Results of ED models on dev set.

Table 4. F1 scores of ED models on dev set.

Model Dev F1

Input Mention Entity Weights ensemble

no pos over all maxpool 0.89582 0.90096

no pos over 2 sides maxpool 0.89414 0.89971

no pos over subseq maxpool 0.89902 0.90296

pos over all maxpool 0.89727 0.90169

pos over 2 sides maxpool 0.89682 0.90125

pos over subseq maxpool 0.89925 0.90344

pos over subseq add attend 0.89844 0.90249

pos over subseq mul attend 0.89891 0.90308

pos over subseq scaled-dot
attend

0.89837 0.90278

ED model ensemble - 0.90965

We present performances of different ED models on dev set in Table 4. The
“Input” column denotes whether to enhance character embedding with position
embedding. The “Mention” and “Entity” column denotes the ways to generate
representation from hidden state sequence. For mention representation, “over
all” means applying maxpooling over all the hidden states, “over 2 sides” means
applying maxpooling over hidden states of the left and right side of mention
resepectively and “over subseq” is our proposed method which only process over
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the hidden states of mention subsequence. From the results of the first 6 mod-
els, we can see that with “pos” input and “over subseq” strategy to generate
mention representation, our approach achieves the best performance, indicating
the importance of integrating mention position information. Although “over 2
sides” strategy takes mention’s position into consideration as well, but it per-
forms even worse than “over all” strategy. We believe it is because both sides
of context are shorter than the original text, which makes it more difficult to
capture usefull semantic information. For entity representation, we compare the
4 strategies that we introduce in Section 2.3. From the results of the 6th to
9th models, we surprisingly find that “maxpool” strategy outperforms all the
attention-based strategies. We assume it is because entity description is too long
for attention mechanism to effetively extract the most discriminative character.
We also apply weights ensemble for each ED model training and observe sub-
stantial improvements. Finally, we ensemble the outputs of all the single models
in Table 4 to obtain final predictions. And the result is shown in the last row.

3.4 Results of EL model

Table 5. F1 scores of the proposed EL model on dev, preliminary test and final test
set.

EL Model Dev F1 Pre Test F1 Final Test F1

ER model ensemble +
ED model ensemble

0.77442 0.77275 0.79266

Combining the above ensemble ER and ED model is our proposed EL model
for CCKS2019 Task 2. We present its result on dev set, preliminary test set
and final test set in Table 5. Since these datasets are sampled from the same
distribution, the performances are very similar. Note that the performance gain
in the final test set is mainly due to organizers’ careful review to the final test
set and removal of some wrong labels.

4 Conclusion

In this paper, we set out to investigate the utility of external information for
Chinses short text entity linking. To this end, we propose a enhanced character
embedding based neural approach which explicitly incorporates mention dictio-
nary and mention position information into the models. We achieve significant
improvements over a collection of baselines on CCKS2019 Task 2, verifying the
value of such information.
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