
Variable-Size Relation Extraction and Table Information
Extraction

Shaodong Hou1, Yiqing Zhou1, Xianming Tong1

1 Minerva Technologies Co. Ltd. (苏州美能华智能科技有限公司）,
No. 88 Jinjihu Blvd., Suite G1-902, Industrial Park, Suzhou, Jiangsu, China

Abstract. In the Financial Report subtask of the CCKS Task 5, the challenge is that
a file may have tens of pages and a table may be across multiple physical pages, we
aim at optimizing the performance of detecting the table regions and cells and joining
the table parts separated by page boundaries. In the Personnel Change Report subtask
of the CCKS Task 5, seven entities are defined in the personnel change relation.
Technically relations with more than two entities can be separated into triples[1], but
in this case labeling the files requires extra efforts. Identifying multi-entities relation
directly is non-trivial since multiple relations of the same type are difficult to be
separated, especially when they share some entities. Given that no entity in the
personnel relation is mandatory, it’s infeasible to retrieve relations by seeking for head
entities. Clustering relations with the correlation matrix [2] cannot handle the sharing-
entities case. We introduce a two-stage neural architecture to identify variable-size
relations. In the first stage, entity spans are retrieved. In the second stage, we link the
entities by decoding the relation sequences. Unlike conventional decoders, the number
of relations is dynamic during decoding. We introduce a pointer network to track and
manage the relations.

1 Introduction

Relation extraction (RE) is a task of identifying the semantic relationship between pairs of
entities mentioned in the input sentence. Some neural-based approaches encode linguistic
and syntactic properties of long word sequences, making them preferable for sequence-
related tasks and significantly better than pattern-based approaches and machine learning
approaches based on engineered features[3]. Convolutional Neural networks (CNNs) [4]
and Long Short-Term Memory (LSTM) networks [5] are highly efficient and effective as
they require less feature engineering in relation extraction tasks. Recent research shows that
we can combine CNNs with RNNs to build a more powerful feature extraction network [6].
In addition, by feeding LSTM outputs to reinforcement learning (RL) and generative
adversarial network (GAN) remarkable results can also be achieved[7].

Traditionally, Relation extraction task is approached as two separate subtasks: entity
extraction and relation extraction. In the phase of entity extraction, there may be a large

number of duplicate or wrong entities that are extracted from the text. Introducing a
sentence-level selective attention [8] can make the model concentrate on the entities which
play a key role in relation construction. Some researches that focus on a general purpose of
taking into account dependency tree information [1] to model the relations between the
entities and others introduce a quadratic scoring layer [9] to model the two subtasks.
However, due to the lack of support from external corpus information, the general ability
of the model is insufficient and the deep semantic logic cannot be perceived.

Pretrained language models are able to capture the meaning dynamically according to
the context. Recently, some pretrained general-purposed language encoders have been
proposed, including GPT [10], GPT2 [11], BERT [12], roBERTa [13], ERNIE [14],
ERNIE2.0 [15] and XLNet [16]. These models were trained on large amounts of unlabeled
text to embed generalizable words and can be fine-tuned to accommodate supervisory tasks.
Among them, the respective Chinese pretrained models published by BERT and ERNIE are
most widely used in Chinese Natural Language Processing (NLP) tasks.

BERT (Bidirectional Encoder Representations from Transformers) is a new method of
pre-training language representations which can obtain state-of-the-art results on a wide
range of NLP tasks. Some recent attempts based on BERT pretrained model have brought
forth encouraging results in the relational extraction models, including one-stage relation
extraction task combining BERT and CRF [17] and two-stage task that relies on the feature
representation of BERT[18]. Most researches focus on using triplet relationships to
correlate information between entities and relationships[2]. However, the construction of
triples will limit the performance of the model in the face of complex multi-relation
entities.[2, 17, 18]

In this paper, we propose a novel two-stage neural network for relation extraction. At
stage one, we use an entity model to predict the entities for each relation type. At stage two,
a pointer network model [19] is introduced to predict the relations among the entities. With
the aid of BERT-base-Chinese pretrained model and pointer network architecture, our
model achieves the state-of-the-art performance on the CCKS2019 Task 5.

2 Relation Extraction

2.1 Related Works

Previous works typically leverage the correlation matrix to predict candidate relations in a
whole sentence. Approaches in this type have two limitations. Firstly, an entity is formed
by consecutive tokens, predicting relations between entities either requires bipartite-graph-
like connections between the tokens or specifying a head/tail token [2] in each entity. Both
strategies require the model to learn the constraints, which could be programmed instead.
Secondly, to predict a relation with more than two entities, it needs to cluster the relations

with connected graph. However, if an entity is reused in more than one relation of the same
type, multiple relations are mixed together. It is tricky to separate the relations.

2.2 Model Architecture

We propose a two-stage approach to reduce the prediction space. In stage one, we introduce
an entity model to extract the entities for each relation type. In stage two, a pointer network
[19] is used to predict the relations among the entities. To manage the models for each stage,
we build a framework model to hold the entity models and relation models. Each entity or
relation model is dedicated to handle one relation type. That means, the framework model
holds two dictionaries of models with relation type as the keys.

Fig. 1. Model architecture.

2.2.1 The Framework Model

In order to share parameters and reduce memory, we put the token encoding module in the
framework model. Since the token encoding shall contain enough unbiased information for
models of all relation types to fulfill their subtasks, we introduce a pretrained BERT-base-
Chinese [12] as the embedding module and put a RNN layer on top of it.

2.2.2 The Entity Model

The entity model computes the fixed-length encodings of each entity, which takes two steps
to get. The entity encoding not only contains the information derived from BERT
contextualized embeddings, but also encodes the entity type, positions and occurrence
indices, which are useful for differentiating multiple relations of the same type in one
paragraph.

BERT

TokenRNN

Entity
Model

Relation
Model

Entity
Model

Relation
Model

Entity
Model

Relation
Model

…

Step 1, predict the entity spans with BIO tagging. This step simply projects token
encodings into output dimension regarding the number of entities of current relation type.
Predicted BIO tags are converted to entity spans before computing entity encodings.

Step 2, compute the entity encodings. Given the entity spans and token encodings, we
compute entity encodings by adding following additional information to semantic
encodings:
1. Positional embedding

𝑃" = 𝐸%(𝑝"(; 𝜃%), (1)

where 𝑝"(denotes the start token index of each entity. 𝐸%(∙; 𝜃%) is the embedding module
with 𝜃% as parameters, which is equivalent to onehot(𝑝"()2𝜃% . In the remaining of this
article, we neglect the parameter 𝜃% for simplicity.

Since the position could be larger than the maximal position size, we take the remainder
of 𝑝"(/𝑚(instead, where 𝑚(denotes the maximal position size.
2. Occurrence index embedding

𝑂" = [𝐸7(𝑂"7), 𝐸"(𝑂"")], (2)

where 𝑂"7 denotes the entity occurrence index regarding the current entity sequence and 𝑂""
denotes the occurrence index of the same entity type in the current entity sequence. 𝐸7 and
𝐸% are the embedding modules.
3. Entity type embedding

𝑇" = 𝐸;(𝑡"), (3)

where 𝑡" denotes the entity type id and 𝐸; is the related embedding module.
Now we concatenate the embedding to get the entity state

𝑆" = [𝑃", 𝑂", 𝑇"]. (4)

The final entity encoding is the RNN final state of the token sequence with 𝑆" as the
initial state

𝑌" = SpanRNN(𝑋"|𝑆"), (5)

where 𝑋" denotes the token sequence of each entity and SpanRNN is a single-layer LSTM
module.

2.2.3 The Relation Model

After encoding the entities, all non-entity tokens are filtered out. Since the entity encodings
have already encoded context information, it is possible to predict the relations among the

entities by feeding the entity encodings only. To make things clearer, we focus on a single
relation type and depict how relations are predicted given the entity encodings.

As addressed previously, we opted out correlation matrix methodology because it is hard
to differentiate multiple relations when they share entities. We could work around by
specifying a subject entity in each relation type, but we decided not to make any assumption
on the relations so that maximal flexibility could be retained. With this point of view, we
designed a pointer-network-based relation model to predict all possible relation paths. A
relation path is an ordered entity sequence which is equivalent to a relation. Ordering is an
extra output which is not part of the orthodox definition of a relation, however it is required
by pointer network so that state transition procedure can be defined.

Fig. 2. Workflow of the neural architecture (SOR/EOR denotes the start and end token respectively,
𝑒G denotes the 𝑘th entity of a relation)

Given the current decoding state of a relation as 𝑠7, the conditional probability of the next
entity position 𝑐; is computed by the following equations in sequence.

𝑝(𝑐;|𝑌", 𝑠7) = 𝜎(𝑤Mℎ7,;) (6)

ℎ7,; = BLSTMS𝑌"
(TU

;
 (7)

𝑌"(= [V𝑌",W𝑠7X, V𝑌",Y𝑠7X, … , [𝑌",M[Y, 𝑠7]], (8)

where [𝑌",;𝑠7] denotes the concatenation of the 𝑡 th entity encoding and 𝑠7 , 𝑤 is a one-
dimension weight vector. BLSTM(∙); denotes the 𝑡 th hidden state produced by a
bidirectional LSTM.

In each step, we collect 𝐶 = {𝑐;, 𝑝(𝑐;|𝑌", 𝑠7) > 0.5} as the set of possible next entities.
If 𝐶 is an empty set, the decoding procedure outputs -1 indicating the end of it. If |𝐶| > 1,
the decoding procedure duplicates the ongoing relation sequence and its state 𝑠7. For each
𝑐;,

𝑠7dY; = ℎ7,ef. (9)

Entity Model

Relation Model

e0 e1 e20

e21 e3

e3 EORSOR

e40

e41 EOR

e5 EOR

Entity Encodings

Token Encodings

In the training procedure, 𝑐; is sampled from ground truth relations. The cost function is
the cross entropy between the output probabilities and the golden label y(𝑐;).

ℒ7 =i−y(𝑐;) ln 𝑝(𝑐;)
M[Y

;lY

(20)

In the evaluation epoch, we evaluate the relation accuracy in non-ordered way.

𝑃7 =
𝑛enoo7

p𝐶%o"qp
, 𝑅7 =

𝑛enoo
p𝐶;os;t7 p

(11)

ℎ7,; = BLSTMS𝑌"
(TU

;
 (12)

𝐹1 = max
7
xyzT{T
zTd{T

|, (13)

where 𝑛enoo7 , 𝑃7,𝑅7 denotes the correct number, precision and recall by comparing the 𝑖th
relation label with the predicted relation. We find the best-matched relation and compute
F1 as the score of the current prediction.

2.2.4 Evaluation

We evaluate our system in CCKS2019 task 5, Personnel Changes dataset. We divided the
dataset (totally 616 files) into 501 files as training set and 115 files as validation set.

Table 1. Examples from dataset

Case Prediction
2018 年 1 月 8 日，姜巨舫先生因工作
变动原因，辞去公司总经理职务。姜

巨舫先生辞去总经理职务后，仍担任

公司董事、党委书记职务。……

中国民生银行股份有限公司（以

下简称“本公司” ）董事会于 2018 年
7 月 3 日收到董事姚大锋先生和田志
平先生的辞职报告。 由于个人原因
， 姚大锋先生和田志平先生申请辞
去本公司董事及董事会相关专门委员

会委员的职务。 ……

In the first case, the remaining positions are decoded as sequential entities, because they
don’t generate a new relation.

Fig. 3. Sequential entities of the same entity type

In the second case, the two relations share all entities except for the names and genders.
In the first step, given a start token, entity “个人原因” is found, only one relation is on track
at this moment. In the second step, the relation model infers that “姚大锋” and “田志平”
are next parallel entities, so the relation is duplicated. The two relations proceed with
different names and genders (genders appear the same, but the positions are different).
Although successive entities are reused, relations are not merged.

Fig. 4. Parallel entities of the same entity type.

In the following example, resignation and succession events are tagged in different
relation types. After the model inference, the two relations are combined by post-process.

Table 2. Example from dataset

Case Prediction
联美股份有限公司（以下简称 “公司”）董事
会于 2016 年 11月 23 日收到公司董事长朱昌
一先生书面辞职报告，朱昌一先生因个人原

因辞去公司第六届董事会董事长职务。辞职

后，朱昌一先生仍然担任公司董事、总经理

职务。在任职董事长期间，朱昌一先生勤勉

尽责地履行董事长职责， 公司董事会在此对
朱昌一先生为公司健康发展所做的贡献表示

衷心感谢！2016 年 11 月 23 日公司第六届董
事会第十九次会议 7 名董事一致同意选举苏
壮强先生为公司第六届董事会董事长。 苏壮
强先生简历附后。

工作变动原
因 姜巨舫 先生 总经理 董事 党委书记

姚大锋

田志平 先生

先生 董事
董事会相关
专门委员会
委员的职务

董事会相关
专门委员会
委员的职务

董事

个人原因

Fig. 5. Relations merged by post-process.

The final output of this example is:
{
 “600167-联美控股-董事长辞职及选举新任董事长的公告”: {
 “证券代码”: “600167”,
 “证券简称”: “联美控股”,
 “人事变动”: [
 {
 “离职高管姓名”: “朱昌一”,
 “离职高管性别”: “先生”,
 “离职高管职务”: “第六届董事会董事长(仍担任公司董事、总经理

职务)”,
 “离职原因”: “个人原因”,
 “继任者姓名”: “苏壮强”,
 “继任者性别”: “先生”,
 "继任者职务": "第六届董事会董事长"
 }
]
 }
}

2.3 Analysis and Future Work

In this two-stage model design, the BIO tagging of the entity model conversed to 0.946 after
40 iterations and afterwards keeps stable, as shown is Fig. 6. The reason why the tagging
step cannot reach higher accuracy is that some entities occur multiple times but only one
occurrence is tagged.

Another shortcoming of this design is that accuracy might decrease as the number of
entities in each relation type increases. We predefined two relation types for the test. In
CCKS 2019 Task 5 dataset, we leave the combining work to post-process.

For the future work, we will try to control the variation and support larger relations. We
plan to explore the following directions:

工作变动原

因
朱昌一 先生

第六届董事

会董事长

苏壮强 先生
第六届董事

会董事长

董事 总经理

1. Tagging all matching entities and merging them before relation recognition. The
methodology will reduce ambiguity when predicting the entity spans.

2. Concatenating the content-based embeddings to the entity encodings. Entity model
tends to output similar entity encodings of the same entity type. But we want the
encodings to capture more context such as the name’s literal embedding. This is
essential for the relation model to connect long distance entities.

(a) Metrics of the entity model. (b) Metrics of the relation model.

Fig. 6. Metrics during training iterations.

3 Table Information Extraction

All of the target tables in this task have a plane structure. Therefore, although we have
models to handle more complex table layouts, a method that simply extract data from the
tables row by row is adopted here. The overall workflow is shown in Fig. 5. Among the
steps, what dominate the duration and accuracy are extract table cells and handle cross-
page situation, respectively, which will be illustrated later.

Fig. 7. Workflow of table information extraction.

Resolve
document

Extract
table cells

Attach texts
to table

cells
Background CellsPDF

texts

Join cross-
page parts

Cells with texts

Extract data
row by rowTables Data Map items Output

3.1 Extract Table Cells

With a binarized background image as the input (Fig. 6 (a) shows an example), we extract
table cells with BFS algorithm. Extracted cells are represented as (x0, y0, x1, y1), where
x0, y0, x1 and y1 are left, top, right and bottom positions (by pixel) of a cell. This method
applies two-layers of BFS. The first layer seeks for the outlines of the tables by tracking
black pixels. The minimal rectangle containing each connected outline pixels suggests the
region of a table. The second layer tracks all white connected graphs inside the table regions.
Based on the assumption that all cells are isolated by black boundaries, the outcome of the
second BFS will be the region of each cell.

One trick to accelerate the process is to set all-white pixel rows as visited before starting
BFS (illustrated in Fig. 8 (b), yellow area). Array operation costs less time than BFS
tracking does as it needs not to acquire for dynamic memory.

Replacing BFS with horizontal scanning could make it even faster, at the sacrifice of
universality however, so the scanning means is not employed.

(a) Binarized background image. (b) Illustration of regions and cells detection.
Yellow area is visited by detecting all-white
rows. Pink area is visited by cells detection.

Fig. 8. Extract table cells from a background image.

3.2 Handle Cross-page Situation

A table and cell completeness detection algorithm is adopted to deal with the situation that
a table crosses pages. There are two challenges: 1) recognizing and ignoring headers and
footers; 2) determining whether we should merge the cross-page cells or not.

For the first challenge, we identify the header by detecting header line and recognize the
footer by compositing position, width of text box and text pattern.

(a) separated cells in <母公司资产负债表>

(b) the integral cell in <合并资产负债表>

Fig. 9. Example of comparing “项目” value sets among tables in the same format.

For the second challenge, we solve it by comparing the “项目” value sets of tables in the
same format. As the example shown in Fig. 9, when we discover “以公允价值计量且其
变动计入当期” and “损益的金融负债” in <母公司资产负债表>, it can be noticed that
neither of these items appear in <合并资产负债表>, while the concatenated string of them
does. Consequently, we should merge these cross-page cells.

4 Conclusions

In this paper, we propose a two-stage neural architecture to predict the BIO tagging of
entities spans and the conditional probabilities of next entity index 𝑝(𝑐;) in relation
decoding. By using the two-stage architecture, we are able to reduce the prediction space in
relation identifying. Pointer network is introduced to transfer the relation state 𝑠7dY; from
the last hidden state ℎ7 and the next entity set 𝐶. Our method works with the variable size
of relations as well as relations-sharing entities. No constraint is imposed during relation
labeling and prediction.

In future work, we will try tagging and merging all candidate entities to improve the
entity tagging accuracy. Besides, more context will be encoded into entity representation
so that long-distance entities can be connected. For table information extraction, we are
adding more coverages on corner cases on top of our table detection and reconstruction
algorithms for complex layouts.

References

1. M. Miwa and M. J. a. p. a. Bansal, "End-to-end relation extraction using lstms on sequences and
tree structures," 2016.

2. G. Bekoulis, J. Deleu, T. Demeester, and C. J. E. S. w. A. Develder, "Joint entity recognition and
relation extraction as a multi-head selection problem," vol. 114, pp. 34-45, 2018.

3. T. H. Nguyen and R. Grishman, "Relation extraction: Perspective from convolutional neural
networks," in Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language
Processing, 2015, pp. 39-48.

4. D. Zeng, K. Liu, Y. Chen, and J. Zhao, "Distant supervision for relation extraction via piecewise
convolutional neural networks," in Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, 2015, pp. 1753-1762.

5. Z. Liu et al., "Entity recognition from clinical texts via recurrent neural network," vol. 17, no. 2,
p. 67, 2017.

6. Z. Liu, X. Wang, Q. Chen, and B. Tang, "Chinese clinical entity recognition via attention-based
CNN-LSTM-CRF," in 2018 IEEE International Conference on Healthcare Informatics Workshop
(ICHI-W), 2018, pp. 68-69: IEEE.

7. T. Zhang, H. Ji, and A. J. D. I. Sil, "Joint entity and event extraction with generative adversarial
imitation learning," vol. 1, no. 2, pp. 99-120, 2019.

8. Y. Lin, S. Shen, Z. Liu, H. Luan, and M. Sun, "Neural relation extraction with selective attention
over instances," in Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2016, pp. 2124-2133.

9. I. Bekoulis, J. Deleu, T. Demeester, and C. Develder, "Reconstructing the house from the ad:
Structured prediction on real estate classifieds," in EACL2017, the 15th Conference on the
European Chapter of the Association for Computational Linguistics, 2017, pp. 1-6.

10. A. Radford, K. Narasimhan, T. Salimans, and I. J. U. h. s.-u.-w.-a. c. o.-a. r. l. l. u. p. p. Sutskever,
"Improving language understanding by generative pre-training," 2018.

11. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. J. O. B. Sutskever, "Language models
are unsupervised multitask learners," vol. 1, no. 8, 2019.

12. J. Devlin, M.-W. Chang, K. Lee, and K. J. a. p. a. Toutanova, "Bert: Pre-training of deep
bidirectional transformers for language understanding," 2018.

13. Y. Liu et al., "RoBERTa: A Robustly Optimized BERT Pretraining Approach," 2019.
14. Y. Sun et al., "ERNIE: Enhanced Representation through Knowledge Integration," 2019.
15. Y. Sun et al., "ERNIE 2.0: A Continual Pre-training Framework for Language Understanding,"

2019.
16. Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. J. a. p. a. Le, "XLNet:

Generalized Autoregressive Pretraining for Language Understanding," 2019.
17. N. Pang, L. Qian, W. Lyu, and J.-D. J. a. p. a. Yang, "Transfer Learning for Scientific Data Chain

Extraction in Small Chemical Corpus with BERT-CRF Model," 2019.
18. S. Yang, D. Feng, L. Qiao, Z. Kan, and D. Li, "Exploring Pre-trained Language Models for Event

Extraction and Generation," in Proceedings of the 57th Conference of the Association for
Computational Linguistics, 2019, pp. 5284-5294.

19. O. Vinyals, M. Fortunato, and N. Jaitly, "Pointer networks," in Advances in Neural Information
Processing Systems, 2015, pp. 2692-2700.

